

12-bit 140 MSPS IQ DAC

SPECIFICATION

1 FEATURES

- TSMC CMOS 65 nm
- Resolution 12 bit
- Current-sinking DAC
- Different power supplies for digital (1.2 V) and analog parts (2.5 V)
- Sampling rate up to 140 MSPS
- Optional internal differential resistive load
- Adjustable full-scale output range
- Dynamic performance:
 - SFDR= 70 dB, NSD= 144.6 dBm/Hz for F_{clk} = 140 MHz and F_{in} = 5 MHz SFDR= 61.6 dB, NSD= 143.9 dBm/Hz for F_{clk} = 140 MHz and F_{in} = 30 MHz
- Differential nonlinearity 0.18 LSB
- Integral nonlinearity 0.5 LSB
- Compact die area 0.66 mm²
- Supported foundries: TSMC, UMC, Global Foundries, SMIC

2 APPLICATION

- Wireless infrastructures
- Broadband communications
- Picocell, femtocell base stations
- Medical instrumentation
- Ultrasound transducer excitation
- Signals and arbitrary waveform generators

3 OVERVIEW

The 12-bit 140 MSPS IQ DAC employs a high-performance current steering architecture and provides optional differential current output or differential voltage output. The bandgap and current source are included to provide a complete DAC. The DAC can be configured to adjust full-scale output range. The DAC uses segmentation architecture combined with Q² random walk algorithm to achieve excellent dynamic and static performance, wide output bandwidth. An internal resistive load together with current source is used to set differential voltage output, which independent from process, supply and temperature. LVDS transmitter, output buffers and IO PADs are included.

The block is designed on TSMC CMOS 65 nm technology.

4 STRUCTURE

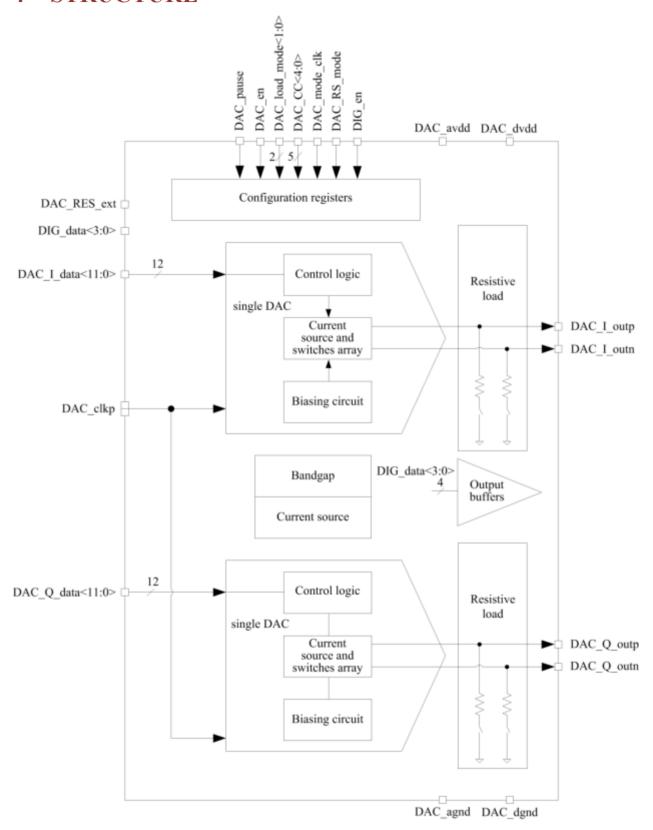


Figure 1: IQ current steering DAC module block diagram

5 PIN DESCRIPTION

Name	Direction	Description			
DAC_I_outp	0	Differential output current of channel I			
DAC_I_outn	Ŭ	Birrelential output current of channel i			
DAC_Q_outp	0	Differential output current of channel Q			
DAC_Q_outn	Ŭ				
		DAC enable:			
DAC_en	I	"0" disabled			
		"1" enabled			
	_	Pause enable:			
DAC_pause	I	"0" disabled			
		"1" enabled			
	_	Output buffers enable:			
DIG_en	I	"0" disabled			
		"1" enabled			
	_	Divider enable:			
DAC_mode_clk	I	"0" disabled ($F_{clk INT} = F_{clk EXT}$)			
		"1" enabled $(F_{clk \ INT} = F_{clk \ EXT}/2)$			
DAC_I_data<11:0>	I	Data input of channel I			
DAC_Q_data<11:0>	I	Data input of channel Q			
DAC_RES_ext	I	External resistor input			
DAC_clkp	I	140 MHz clock input			
		Register of adjust full scale output current if			
		DAC_load_mode<1:0> = "0X":			
		"00000" 2.56 mA			
		with step of 0.64 mA			
		"11111" 22.4 mA			
		Register of adjust full scale output voltage if			
DAG GG (4:0)	т.	DAC_load_mode<1:0> = "10":			
DAC_CC<4:0>	I	"00000" 0.128 V			
		with step of 0.032 V			
		"11111" 1.120 V			
		Register of adjust full scale output voltage if DAC load mode<1:0> = "11":			
		"00000" 0.256 V			
		with step of 0.064 V "11111" 2.240 V			
	+	Load mode:			
		"0X" an external resistive load or transformer			
DAC_load_mode<1:0>	I	"10" an internal differential resistive load 50 Ohm			
		"11" an internal differential resistive load 100 Ohm			
		Resistor defining reference current mode:			
DAC_RS_mode	I	"0" an external resistor			
	1	"1" an internal resistor			
DIG data<3:0>	I	Data input			
DAC avdd	I/O	Analog blocks supply voltage (2.5 V)			
DAC dvdd	I/O	Digital blocks supply voltage (1.2 V)			
DAC agnd	I/O	Analog blocks ground			
DAC dgnd	I/O	Digital blocks ground			
Dric_ugiiu	1/0	Digimi ologko ground			

6 FUNCTIONAL DESCRIPTION

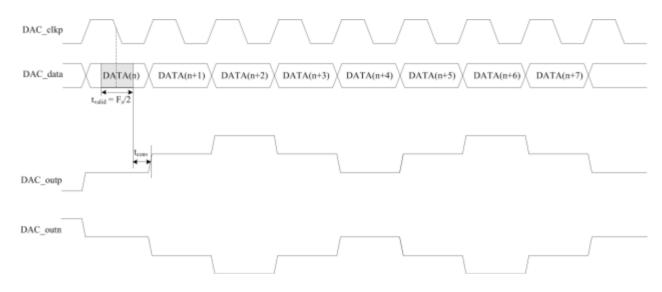


Figure 2: DAC behavior diagram

The digital input word (DAC_data) is latched on the falling edge of the clock signal (DAC_clkp). On the rising edge of the clock signal (DAC_clkp) the latched data digital word (DAC_data) is converted to its analog value at the outputs of the DAC (DAC outp and DAC outn).

6.1 FULL-SCALE OUTPUT RANGE PROGRAMMIBILITY

There is also ability to adjust full-scale output range and switch between optional internal resistive load (50 Ohm and 100 Ohm) and external resistive load.

$$A_{IOUT p-p} = 2.56 \text{ mA} + DAC_{CC} * 2.5 \text{ uA} * 256,$$

where DAC CC – decimal representation register adjust full-scale output range.

6.2 OUTPUT BUFFER

There is also ability to use four output buffers, where first buffer has input DIG_data<0> and output DAC_I_outp, second buffer – input DIG_data<1> and output DAC_I_outn, third buffer – input DIG_data<2> and output DAC_Q_outn, fourth – input DIG_data<3> and output DAC Q outp. Control signals DAC en should be set in "0".

7 LAYOUT DESCRIPTION

7.1 TECHNOLOGY OPTIONS

DAC is designed under TSMC LP CMOS 65 nm technology process with following options:

- 4x1z1u metal option
- 1.2 V standard Vt MOS
- 2.5 V MOS
- P+polysilicon OP resistor

7.2 PHYSICAL DIMENTIONS

DAC layout dimensions are given in the table 1.

Table 1: DAC dimensions

Dimension	Value	Unit
Height	570	um
Width	1157	um

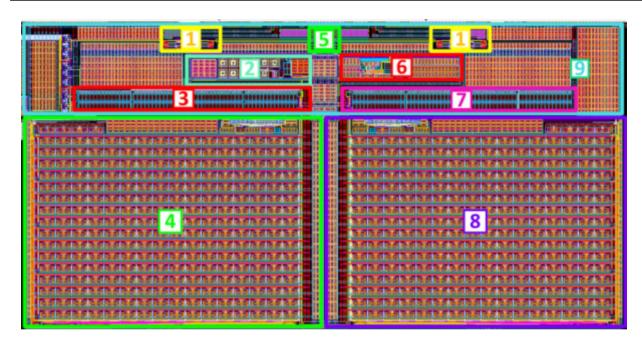


Figure 3: DAC layout

- 1. Output buffers
- 2. Bandgap
- 3. Resistive load I
- 4. DAC single I
- 5. Configuration registers
- 6. Current source
- 7. Resistive load Q
- 8. DAC single Q
- 9. Blocking capacitors

7.3 LAYOUT FLOORPLAN

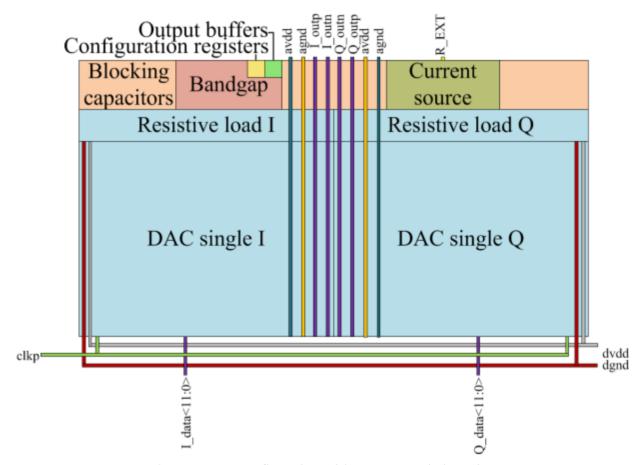


Figure 4: Layout floorplan with recommended routing

8 INTEGRATION GUIDELINES

8.1 PLACE AND ROUTE GUIDELINES

- 1) DAC should be placed on a top level chip corner section or close to one edge of the top level chip.
- 2) DAC analog outputs DAC_I_outp, DAC_I_outn, DAC_Q_outp, DAC_Q_outn should be connected to analog IO PADs or internal analog circuits (filter). IO PADs should not have an internal resistor to increase bandwidth.
- 3) DAC power supply and ground DAC_avdd, DAC_dvdd, DAC_agnd, DAC_dgnd should be connected to IO PADs.
- 4) Wiring of analog inputs should be symmetrical and as short as possible.
- 5) Noisy circuits should not place near DAC.
- 6) Minimum space 40 um between DAC and other circuits should be kept.
- 7) Minimum metal wiring width is 100 um for DAC_avdd, DAC_agnd. Multiple layers of metal can be used to reduce layout space.
- 8) Minimum metal wiring width is 10 um for DAC_dvdd, DAC_dgnd. Multiple layers of metal can be used to reduce layout space.
- 9) Allowable total resistance of DAC_avdd and DAC_agnd are 0.5 Ohm. Blocking capacitors should be added and placed as close as possible.
- 10) Allowable total resistance of DAC_dvdd and DAC_dgnd are 2 Ohm. Blocking capacitors should be added and placed as close as possible.

8.2 OPERATION GUIDELINES

1) Power supply decoupling should be done according the following figure. It is recommended the 100 nF capacitors to be placed as close as possible to the chip.

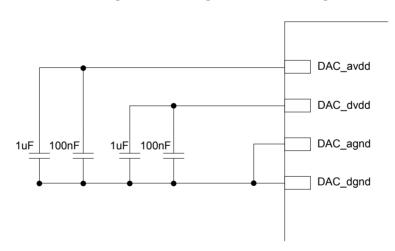


Figure 5: Power supply decoupling

OPERATION CHARACTERISTICS

9.1 TECHNICAL CHARACTERISTICS

Technology	TSMC CMOS 65 nm
Status	silicon proven
Area	0.66 mm ²

9.2 ELECTRICAL CHARACTERISTICS

The values of electrical characteristics are specified for $V_{dd_a} = 2.25 \div 2.75 \text{ V}$, $V_{dd_d} = 1.08 \div 1.32 \text{ V}$ and $T_j = +27 \text{ °C}$, typical values are at $V_{dd_a} = 2.5 \text{ V}$, $V_{dd_d} = 1.2 \text{ V}$ and $T_i = 27 \text{ °C}$, unless otherwise specified.

typical values are at $V_{dd} = 2.5$	$V, V_{dd d} =$	1.2 V and $T_i = 2/^{\circ} \text{ C}$, unless of	otnerwise spe			
Parameter	Symbol	Condition		Value		
1 at ameter	Symbol	Condition	min	typ.	max	Unit
Operating temperature range	T_i	-	-40	27	+85	°C
		Power supply requireme				
Analog supply voltage	V _{dd a}	-	2.25	2.5	2.75	V
Digital supply voltage	V _{dd d}	1	1.08	1.2	1.32	V
Analog current consumption in normal mode	I _{ACN}	$A_{IOUT p-p}$ = 20.48 mA F_S = 140 MSPS	-	40.4	-	mA
Analog current consumption in pause mode	I_{ACP}	$A_{IOUT p-p}$ = 20.48 mA F_S = 140 MSPS	-	40	-	mA
Digital current consumption in normal mode	I_{DCN}	$A_{IOUT p-p}$ = 20.48 mA F_S = 140 MSPS	-	7.6*	-	mA
Digital current consumption in pause mode	I_{DCP}	$F_S = 140 \text{ MSPS}$	-	60*	-	uA
Current consumption in standby mode	I_S	-	-	3*	-	uA
Total power consumption in normal mode	P _{CN}	$A_{IOUT p-p}$ = 20.48 mA F_S = 140 MSPS $P_{ACN} + P_{DCN}$	-	110.2	-	mW
Total power consumption in pause mode	P _{CP}	$A_{IOUT p-p}$ = 20.48 mA F_S = 140 MSPS $P_{ACP} + P_{DCP}$	-	100	-	mW
		DC accuracy				
Resolution	N	-		12		bit
Differential nonlinearity	DNL	-	-	0.18*	-	LSB
Integral nonlinearity	INL	-	-	0.50*	-	LSB
Offset error	OE	-		0.1*	-	LSB
Gain error	GE	-		0.3*	-	LSB
		Digital inputs				
Input logic coding				Offset bina	ry	code
High level input voltage	V_{IH}	-	$0.7V_{dd\ d}^*$	-	-	V
Low level input voltage	$V_{\rm IL}$	-	-	-	$0.3V_{dd\ d}^*$	V

Table "Electrical characteristics" (continue)

Analog outputs	Developed	Symbol	Con Prince	Value			T T •
Differential full-scale output current range	Parameter		Condition	min	typ.	max	Unit
Differential full-scale output current range			Analog outputs				
DAC Load mode< -1.0> = "018"		A _{IOUT p-p}	"0x", DAC_CC<4:0>=	-	2.56*	-	mA
DAC CC<4-(0>= *100000^* CC<4-(0) = *100000^* CC<4-(0) = *100000^* CC<4-(0) = *11111111111111111111111111111111111				-	22.4*	-	mA
Differential full-scale output voltage range	Differential full-scale output	A _{VOUT p-p}		-	0.256*	-	V
DAC_CC<4:0>= "000000" 0.1.20			$DAC^{-}CC<4.0>="11111"$	-	2.240*	-	V
DAC CC<4:0>="11111"	voltage range		DAC_CC<4:0>= "00000"	-	0.128*	-	V
Output settling time				-		-	V
Output rise time Is	Output resistance	R _{OUT}	-	-	200*	-	kOhm
Dutput fall time		t_{S}	code from 0 to FFF	-		-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		t_R		-		-	ps
Timing information Timing information Timing information	Output fall time	$t_{\rm F}$	from 90% to 10%	-	110*	-	ps
Sampling rate	Digital latency	L	-	1	1	-	clock cycles
$ \begin{array}{ c c c c c c } \hline \text{Duty cycle} & S & - & 45 & 50 & 55 & 9\% \\ \hline \textbf{Dynamic characteristic at } F_S = \textbf{50 MSPS and } A_{\text{YOUT }_{P,P}} = \textbf{1.28 V} \\ \hline \textbf{Noise spectral density} & Fin= 5 \text{ MHz} & 143.4 & 143.9 & 144.6 & dBm/\\ \hline \textbf{Fin= 10 MHz} & 143.4 & 143.9 & 144.6 & dBm/\\ \hline \textbf{Fin= 20 MHz} & 138.1 & 140.0 & 143.5 & dBm/\\ \hline \textbf{Spurious-free dynamic range} \\ \textbf{SPDR} & Fin= 5 \text{ MHz} & 64.4 & 68.1 & 72.9 & dB \\ \hline \textbf{Fin= 10 MHz} & 59.0 & 65.5 & 70.1 & dB \\ \hline \textbf{Fin= 20 MHz} & 53.0 & 61.1 & 64.7 & dB \\ \hline \textbf{Ein= 10 MHz} & 59.0 & 65.5 & 70.1 & dB \\ \hline \textbf{Fin= 20 MHz} & 144.0 & 144.7 & 145.2 & dBm/\\ \hline \textbf{Fin= 10 MHz} & 143.7 & 144.5 & 145.0 & dBm/\\ \hline \textbf{Fin= 10 MHz} & 143.7 & 144.5 & 145.0 & dBm/\\ \hline \textbf{Fin= 30 MHz} & 142.7 & 144.2 & 145.0 & dBm/\\ \hline \textbf{Fin= 30 MHz} & 142.7 & 144.2 & 145.0 & dBm/\\ \hline \textbf{Fin= 5 MHz} & 64.8 & 69.5 & 73.8 & dB \\ \hline \textbf{Fin= 5 MHz} & 63.7 & 68.3 & 72.6 & dB \\ \hline \textbf{Fin= 20 MHz} & 63.7 & 68.3 & 72.6 & dB \\ \hline \textbf{Fin= 30 MHz} & 60.1 & 63.6 & 66.3 & dB \\ \hline \textbf{Dynamic characteristic at } F_S = \textbf{140 MSPS and } A_{\text{YOUT }_{P,D}} = \textbf{1.28 V} \\ \hline \textbf{Fin= 20 MHz} & 63.3 & 64.4 & 65.4 & dB \\ \hline \textbf{Fin= 30 MHz} & 64.8 & 69.5 & 73.8 & dB \\ \hline \textbf{Fin= 20 MHz} & 63.3 & 64.4 & 65.4 & dB \\ \hline \textbf{Fin= 30 MHz} & 60.1 & 63.6 & 66.3 & dB \\ \hline \textbf{Dynamic characteristic at } F_S = \textbf{140 MSPS and } A_{\text{YOUT }_{P,D}} = \textbf{1.28 V} \\ \hline \textbf{Fin= 30 MHz} & 144.3 & 144.3 & 145.2 & dBm/\\ \hline \textbf{Fin= 10 MHz} & 143.8 & 144.3 & 145.2 & dBm/\\ \hline \textbf{Fin= 10 MHz} & 143.8 & 144.3 & 145.2 & dBm/\\ \hline \textbf{Fin= 30 MHz} & 143.8 & 144.3 & 145.2 & dBm/\\ \hline \textbf{Fin= 30 MHz} & 143.6 & 144.4 & 145.3 & dBm/\\ \hline \textbf{Fin= 40 MHz} & 140.8 & 142.9 & 143.8 & dBm/\\ \hline \textbf{Fin= 40 MHz} & 140.8 & 142.9 & 143.8 & dBm/\\ \hline \textbf{Fin= 40 MHz} & 65.0 & 70.8 & 73.9 & dB \\ \hline \textbf{Fin= 40 MHz} & 60.5 & 62.7 & 65.5 & dB \\ \hline \textbf{Fin= 10 MHz} & 60.5 & 62.7 & 65.5 & dB \\ \hline \textbf{Fin= 10 MHz} & 60.5 & 62.7 & 65.5 & dB \\ \hline \textbf{Fin= 30 MHz} & 60.1 & 61.6 & 63.2 & dBm/\\ \hline \textbf{Fin= 30 MHz} & 60.1 & 61.6 & 63.2 & dBm/\\ \hline \textbf{Fin= 30 MHz} & 60.1 & 61.6 & 63.2 & dBm/\\ \hline \textbf{Fin= 10 MHz} & 60.5 & 62.7 & 65.5 & dB \\ \hline Fin= 1$			Timing information				
Noise spectral density	Sampling rate	F_{S}	-	-	-	140	MSPS
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Duty cycle	S	-	45	50	55	%
Noise spectral density	Dyn	amic cha		l A _{VOUT p-p} =	1.28 V		
Fin= 20 MHz							dBm/Hz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Noise spectral density	NSD	Fin= 10 MHz		142.5		dBm/Hz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							dBm/Hz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							dB
Noise spectral density NSD Fin= 5 MHz 144.0 144.7 145.2 dBm/Fin= 10 MHz 142.7 144.2 145.0 dBm/Fin= 30 MHz 142.9 144.0 144.5 dBm/Fin= 30 MHz 142.9 144.0 144.5 dBm/Fin= 30 MHz 142.9 144.0 144.5 dBm/Fin= 30 MHz 63.7 68.3 72.6 dBm/Fin= 30 MHz 63.7 68.3 72.6 dBm/Fin= 30 MHz 62.3 64.4 65.4 dBm/Fin= 30 MHz 60.1 63.6 66.3 dBm/Fin= 30 MHz 60.1 63.6 66.3 dBm/Fin= 30 MHz 60.1 63.6 66.3 dBm/Fin= 10 MHz 60.1 63.6 66.3 dBm/Fin= 10 MHz 60.1 63.6 66.3 dBm/Fin= 10 MHz 60.1 63.6 60.3 dBm/Fin= 30 MHz 60.5 62.7 65.5 dBm/Fin= 10 MHz 60.5 62.7 65.5 dBm/Fin= 30 MHz 60.5 62.7 65.5 dBm/Fin= 30 MHz 60.1 60.6 63.2 dBm/Fin= 30 MHz 60.1 60.6 60.2 dBm/Fin= 30 MH	Spurious-free dynamic range	SFDR					dB
Noise spectral density $ \begin{tabular}{l lllllllllllllllllllllllllllllllllll$						64.7	dB
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Dyna	amic char					ı
Noise spectral density		NSD					dBm/Hz
Fin= 20 MHz	Noise spectral density						dBm/Hz
$ \text{Spurious-free dynamic range } \text{SFDR} \begin{array}{ l c c c c c c c c c c c c c c c c c c $							dBm/Hz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Spurious-free dynamic range	SFDR					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Noise spectral density NSD $Fin = 5 \text{ MHz}$ $Fin = 5 \text{ MHz}$ $Fin = 10 \text{ MHz}$ $Fin = 10 \text{ MHz}$ $Fin = 20 \text{ MHz}$ $Fin = 20 \text{ MHz}$ $Fin = 20 \text{ MHz}$ $Fin = 30 \text{ MHz}$ $Fin = 30 \text{ MHz}$ $Fin = 40 \text{ MHz}$ $Fin = 40 \text{ MHz}$ $Fin = 40 \text{ MHz}$ $Fin = 5 \text{ MHz}$ $Fin = 10 \text{ MHz}$ $Fin = 10 \text{ MHz}$ $Fin = 20 \text{ MHz}$ $Fin = 30 $	D	1	l l			00.3	uв
Noise spectral density NSD Fin= 10 MHz Fin= 20 MHz Fin= 30 MHz Fin= 40 MHz Fin= 40 MHz Fin= 5 MHz Fin= 10 MHz Fin= 20 MHz Fin= 30 MHz Fi	Dyna	amic char		u A _{VOUT p-p} =		1450	dDr. /II
Noise spectral density Fin= 20 MHz							
Fin= 30 MHz Fin= 40 MHz Fin= 40 MHz Fin= 5 MHz Fin= 10 MHz Fin= 10 MHz Fin= 20 MHz Fin= 20 MHz Fin= 30 MHz Fin= 5 MHz Fin= 10 MHz Fin= 10 MHz Fin= 30	Noise spectral density	NCD					
Fin= 40 MHz 140.8 142.9 143.8 dBm/Fin= 5 MHz 65.0 70.8 73.9 dB Fin= 10 MHz 63.3 69.2 74.0 dB Fin= 20 MHz 60.5 62.7 65.5 dB Fin= 30 MHz 60.1 61.6 63.2 dB	Noise spectral density	NSD					dBm/Hz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							dBm/Hz
Spurious-free dynamic range $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Spurious-free dynamic range SFDR Fin= 20 MHz 60.5 62.7 65.5 dB Fin= 30 MHz 60.1 61.6 63.2 dB							
Fin= 30 MHz 60.1 61.6 63.2 dB	Spurious-free dynamic range	SFDR					
			Fin= 40 MHz	58.5	64.5	66.0	dB

^{*-}according to modeling

10 TYPICAL CHARACTERISTICS

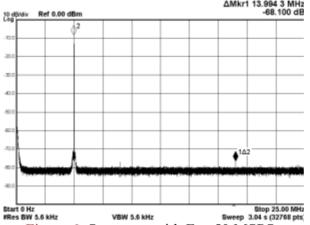


Figure 6: Spectrum with F_S = 50 MSPS, Fin= 5 MHz and $A_{VOUT p-p}$ = 1.28 V

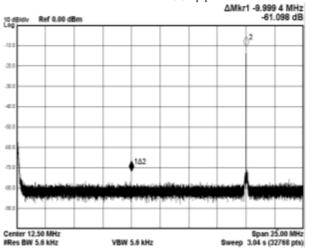


Figure 8: Spectrum with F_S = 50 MSPS, Fin= 20 MHz and $A_{VOUT p-p}$ = 1.28 V

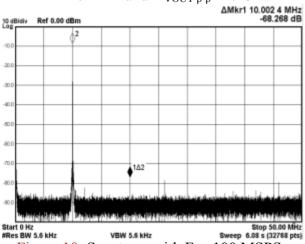


Figure 10: Spectrum with F_S = 100 MSPS, Fin= 10 MHz and $A_{VOUT p-p}$ = 1.28 V

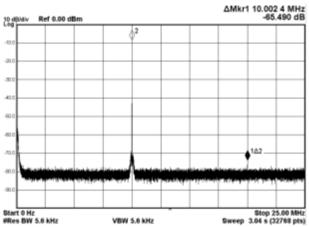


Figure 7: Spectrum with F_S = 50 MSPS, Fin= 10 MHz and $A_{VOUT p-p}$ = 1.28 V

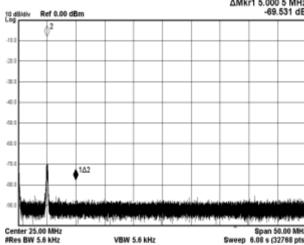


Figure 9: Spectrum with F_S = 100 MSPS, Fin= 5 MHz and $A_{VOUT p-p}$ = 1.28 V

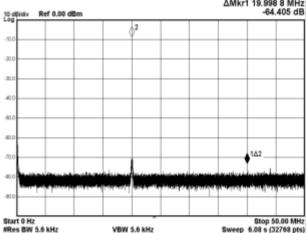
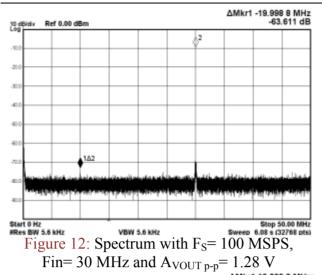



Figure 11: Spectrum with F_S = 100 MSPS, Fin= 20 MHz and $A_{VOUT p-p}$ = 1.28 V

$065TSMC_DAC_08$

12-bit 140 MSPS IQ DAC

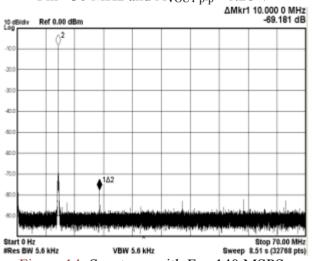


Figure 14: Spectrum with F_S = 140 MSPS, Fin= 10 MHz and $A_{VOUT p-p}$ = 1.28 V

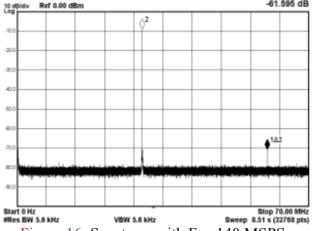


Figure 16: Spectrum with F_S = 140 MSPS, Fin= 30 MHz and $A_{VOUT p-p}$ = 1.28 V

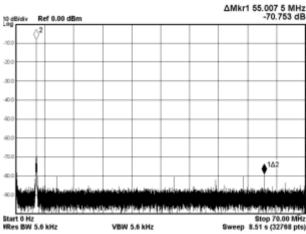


Figure 13: Spectrum with F_S = 140 MSPS, Fin= 5 MHz and $A_{VOUT p-p}$ = 1.28 V

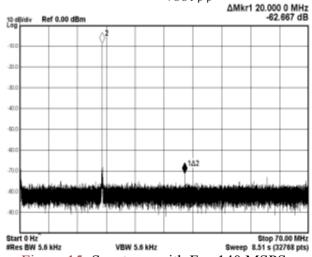


Figure 15: Spectrum with F_S = 140 MSPS, Fin= 20 MHz and $A_{VOUT\ p-p}$ = 1.28 V $_{\Delta Mkr1}$ -20.002 1 MHz -64.524 dB

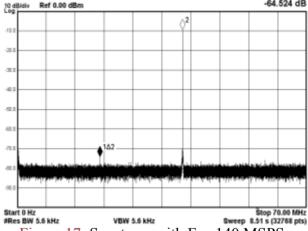


Figure 17: Spectrum with F_S = 140 MSPS, Fin= 40 MHz and $A_{VOUT p-p}$ = 1.28 V

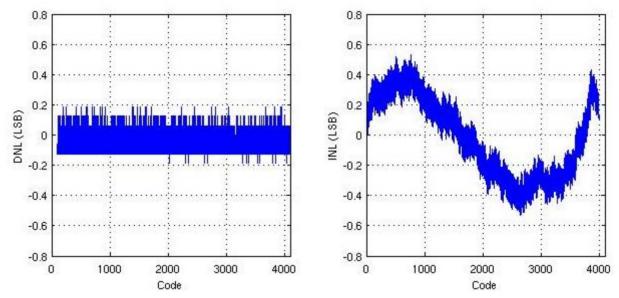


Figure 18: Differential nonlinearity

Figure 19: Integral nonlinearity

11 DELIVERABLES

Depending on license type IP may include:

- Schematic or NetList
- Abstract view (.lef and .lib files)
- Layout (optional)
- Verilog behavior model
- Extracted view (optional)
- GDSII
- DRC, LVS, antenna report
- Test bench with saved configurations (optional)
- Documentation