

5-bit programmable ECL high-frequency divider

SPECIFICATION

1 FEATURES

- AMS035 BiCMOS 0.35 μm
- Differential structure
- Dividing ratio is regulated in the range of 16 ...62 with step 2
- Input differential signal frequency up to 1.7 GHz
- Input signal duty cycle is 0.5
- Scalable structure
- Supported foundries: TSMC, UMC, Global Foundries, SMIC, iHP, AMS, Vanguard, SilTerra, X-FAB

2 APPLICATION

PLL frequency synthesizer

3 OVERVIEW

The 5-bit programmable ECL high-frequency divider is a set of serially connected dividers with the varied dividing ratio 2/3 that is able to scale the structure either into minimum dividing ratio decreasing or maximum dividing ratio increasing. The differential circuit has higher noise immunity. An output divider /2 based on D-trigger provides an input signal duty cycle of 0.5. The block is fabricated on AMS BiCMOS 0.35 µm technology.

4 STRUCTURE

Figure 1: 5-bit programmable ECL high-frequency divider structure

5 PIN DESCRIPTION

Name	Direction	Description	
INp	I	Analog differential input	
INn	I		
C<4:0>	I	Digital code of dividing ratio	
Vbn	I	Reference voltage of current source	
En	I	Enable/disable of divider	
OUTp	О	Analog differential output	
OUTn	0		
VCC	IO	Supply voltage	
GND	IO	Ground	

LAYOUT DESCRIPTION 6

5-bit programmable ECL high-frequency divider dimensions are given in the table 1. Table 1: Block dimensions

Dimension	Value	Unit	
Height	214	μm	
Width	485	μm	

Figure 2: Block layout

- 1.
- Frequency divider 2/3 Frequency divider 2/3 with control logic 2.
- Input divider /2 3.

7 OPERATING CHARACTERISTICS

7.1 TECHNICAL CHARACTERISTICS

Technology_____AMS BiCMOS 0.35 μm
Status_____silicon proven
O.104 mm²

7.2 ELECTRICAL CHARACTERISTICS

The values of electrical characteristics are specified for $V_{cc} = 2.4 \div 3.6 \text{ V}$ and $T_j = -40 \div +85^{\circ}\text{C}$. Typical values are at

 $V_{cc} = 2.7 \text{ V}, T_j = +27^{\circ}\text{C}$, unless otherwise specified

$V_{cc} = 2.7 \text{ V}, 1_j = +27 \text{ C}, \text{ unless}$ Parameter	Symbol	Condition		Value		
			min	typ.	max	Unit
Supply voltage	V_{cc}	-	2.4	2.7	3.6	V
Operating temperature range	T_j	-	-40	27	85	°C
Dividing ratio	С	-	16	-	62	-
Input frequency	F _{IN}	-	-	-	1.7	GHz
Peak-to-peak input voltage	A _{in p-p}	At differential input	0.3	0.4	0.8	V
In-phase component of input signal	A _{in dc}	$V_{cc}=2.7 \text{ V}$	1.5	1.7	2	V
Peak-to-peak output voltage	A_{out_p-p}	At differential input	0.3	0.4	0.55	V
In-phase component of output signal	A _{out dc}	V _{cc} =2.7 V	1.6	1.8	2	V
Supply current	I_{dd}	-	-	1.5	-	mA
Stand-by current	I_{st}	-	-	15	100	nA
Input logic-level high	V_{IH}	-	$0.9V_{cc}$	-	V_{cc}	V
Input logic-level low	$V_{ m IL}$	-	-0.2	0	0.2	V

8 DELIVERABLES

Depending on license type IP may include:

- Schematic or NetList
- Abstract view (.lef and .lib files)
- Layout (optional)
- Verilog behavior model
- Extracted view (optional)
- GDSII
- DRC, LVS, antenna report
- Test bench with saved configurations (optional)
- Documentation