

Quadrature former

SPECIFICATION

1 FEATURES

- TSMC CMOS 65 nm
- Output frequency range 0.075-3 GHz
- Input frequency division (by 2, 4, 8, 16, 32 or 64)
- High accuracy of the phase control
- Output signal strobbing
- Portable to other technologies (upon request)

2 APPLICATION

Quadrature signal processing for mixer

3 OVERVIEW

This device is designed to generate a quadrature local oscillator signal. A quadrature generator circuit constructed in CMOS logic and consists of two converters ECL/CMOS, quadrature former with input frequency divider by 2 or 4, prescaler by 2, 4, 8, 16 and phase control block, with ability of fine tuning of output signal phase. To reduce phase noise output triggers are strobbed by high-frequency signal.

4 STRUCTURE

Figure 1: Quadrature former structure

5 PIN DESCRIPTION

Name	Direction	Description			
QF_TX_EN	I	Enable/disable QF			
QF_MD<2:0>	I	Division ratio selection			
HR_mod	I	Quadrature former harmonic rejection mode selection			
V0i<5:0>	I	Phase correction control for I- channel			
V45i<5:0>	I	Phase correction control for I0 channel			
V90i<5:0>	I	Phase correction control for I+ channel			
V90q<5:0>	I	Phase correction control for Q- channel			
V135q<5:0>	I	Phase correction control for Q0 channel			
V180q<5:0>	I	Phase correction control for Q+ channel			
Inp	I	Differential input from VCO			
Inn	I	Differential input from VCO			
LOi_90p	О	I+ abannal differential output			
LOi_90n	О	I+ channel differential output			
LOi_45p	O	In shannal differential output			
LOi_45n	O	I0 channel differential output			
LOi_0p	O	I- channel differential output			
LOi_0n	O	1- Chamilet differential output			
LOq_90p	O	O abannal differential output			
LOq_90n	O	Q- channel differential output			
LOq_135p	O	On channel differential output			
LOq_135n	O	Q0 channel differential output			
LOq_180p	O	Q+ channel differential output			
LOq_180n	O	Q Chainer unicicitai output			
vcc	IO	Supply voltage 1.2 V			
gnd	IO	Ground			

6 LAYOUT DESCRIPTION

The block dimensions are given in the table 1.

Table 1: Block dimensions.

Dimension	Value	Unit	
Height	450	μm	
Width	165	μm	

Figure 2: Quadrature former layout view

- 1. Phase control
- 2. Converters ECL/CMOS
- 3. Prescaler and Quadrature former
- 4. Strobing triggers and amplifying buffers

065TSMC_QF_03

Quadrature former

7 OPERATING CHARACTERISTICS

7.1 TECHNICAL CHARACTERISTICS

Гесhnology	TSMC 65 nm CRN65LP
Status	silicon proven
Area	0.068 mm^2

7.2 ELECTRICAL CHARACTERISTICS

The values of electrical characteristics are specified for $V_{cc} = 1.14 \div 1.26 \text{ V}$ and $T = -40 \div 125 \text{ °C}$. Typical values are at $V_{cc} = 1.2 \text{ V}$ and T = 85 °C, unless otherwise specified.

Do no mostoni	Symbol	Condition		Value		
Parameter			min	typ	max	Unit
Supply voltage	V _{cc}	-	1.14	1.2	1.26	V
Temperature range	T	=	-40	+85	+125	°C
Input frequency range	F_{in}	=	3.0	-	6.0	GHz
Output frequency range	F_{out}	-	0.075	-	3	GHz
	N	Division by 2	-	2	-	_
		Division by 4	-	4	-	
D		Division by 8	-	8	-	
Division ratio		Division by 16	-	16	-	
		Division by 32	-	32	-	
		Division by 64	-	64	-	
Output amplitude	V_out _{p-p}	CMOS	-	V_{cc}	-	V
Input amplitude	V_in _{p-p}	-	0.5	-	-	V
IQ phase error	φ	-	-	-	±4	degree
Phase adjustment range	фсогг.	-	±0.05	-	±5	degree
Current consumption	I_av	-	-	11	15	mA
Input logic-level high	V_{IH}	-	$0.85V_{cc}$	-	1.15V _{cc}	V
Input logic-level low	$V_{ m IL}$	-	-0.1	-	+0.1	V

8 TYPICAL CHARACTERISTICS

Figure 3: The time diagram of the quadrature former

Figure 4: Phase tuning range (heterodyne = 1.5 GHz)

 $\begin{array}{c} 065TSMC_QF_03 \\ \text{Quadrature former} \end{array}$

9 **DELIVERABLES**

IP contents:

- Schematic or NetList
- Layout or blackbox
- Extracted view (optional)
- GDSII
- DRC, LVS, antenna report
 Test bench with saved configurations (optional)
- Documentation